
NASA tTechnical NASA-TP-3129 19940028359

Paper
3129

January 1992

A Finite-Difference
Approximate=Factorization
Algorithm for Solution
of the Unsteady Transonic
Small-Disturbance Equation

John T. Batina

i j , , ___ - •

i; !i If,:, i:" _ ,_,, ____.=.. ...... _,,_-,-,-,-,-,-,-,_

' !_..,_se of its significant early commercial potential, this"_rma-
tion,"'w_lL_s been developed under a U.S. Governrr_program,

JU_ 9 _:- ,.] is being diss_d within the United States in a_ance ofgeneral
-' _n-.-T_on_may be du;lic_and used by the re-

. _res_at _be.published,, Release
io other dom_'s_i_l'_es by the recipient shall be

L_t[_.L'EY P_E_I _F_CH Cc_/T__ made subject to these lim_'''_'_LIBR_,Fl I',IASA
HAr,;PTOJ_VIRGII:IIiI ' _ '• _e only with prio_,_ approval and

- _egendshall _d on any

w_for general release January 31, 1994





NASA __3__11 7
Technical
Paper
3129

1992

A Finite-Difference
Approximate-Factorization
Algorithm for Solution
of the Unsteady Transonic
Small-Disturbance Equation

John T. Batina

Langley Research Center
Hampton, Virginia

COPY

NationalAeronauticsand
Space Administration

Officeof Management
Scientificand Technical
InformationProgram





Contents

Abstlact ................................... 1

Introduction ................................. 1

Symbols ................................... 1

Governing Equations ................... : ......... 3

_ISD Equation ............................... 3

Coordinate Transformation ........................... 4

Boundary Conditions ............................ 4

Entropy Model ............................... 6
Alternative streamwise flux ....................... 6
P1essure correction ........................... 6
Modified wake boundaly condition .................... 7

Vorticity Model ............................... 7
Modified velocity vector ......................... 7
Pxessure correction ...... ..................... 8
Modified wake boundaiy condition .................... 8

Approximate-Factorization Algorithm ...................... 8

General Description .............................. 8

Mathematical Fol mulation .......................... 9

Time-Linearizaticn Step ........................... 9

Difference Equations for the Disturbance Velocity ................. 9

At Half-Node Points (i+_/2, j, k) ...................... 10

At HMf-Node lCoi_ts (i, j+V2, k) ...................... 11

At Half-Node lCoirts (i, j, k+_/2) ...................... 12

Difference Equations for the Grid Metrics ................... 13

At Grid Points (i, j, k) .......................... 13

At Half-Node Foints (i+_/2, j, k) ...................... 13

At Half-Node Points (i, j+1/2, k) ...................... 14

Difference Equations for the Left-Hand-Side Operators .............. 14

L_ Operator ............................... 14

L_ Opelator ............ . .................. 17

L¢ Operator ............................... 19

Difference Equations for the Residual ..................... 23

Cgo/Ot Telm ............................... 24

G_gl/_ Term ............................... 24

Og2/OY Term ............................... 26

093/0 _ Term ............................... 26

Difference Equations for the Far-Field Boundary Conditions ........... 27

Upstream Boundary ............................ 27

11"!.'"



Downstream Boundary .......................... 27

Far-Spanwise Boundary .......................... 28

Upper Boundary ............................. 31

Lower Boundaiy ............................. 32

Concluding Remarks ............................ 33

References ................................. 33

_v



Abstract

A time-accurate approximate-factorization (AF) algorithm is described for solution of the three-
dimensional unsteady transonic small-disturbance equation. The AF algorithm consists of a time-
linearization procedure coupled with a subiteration technique. The algorithm is the basis for the
CAP-TSD (Computational Aeroelasticity Program-Transonic Small Disturbance) computer code,
which was developed for the analysis of unsteady aerodynamics and aeroelasticity of realistic aircraft

configurations. The paper describes details on the governing flow equations and boundary conditions,
with an emphasis on documenting the finite-difference formulas of the AF algorithm.

Introduction

Considerable research is being conducted presently to develop computational fluid dynamics

methods for predicting unsteady transonic aerodynamics for aeroelastic applications (ref. 1.) The
resulting computer codes are being developed to provide accurate methods of calculating unsteady
air loads for the prediction of aeroelastic phenomena such as flutter and divergence. One of the
most fully developed codes for analysis of transonic aeroelasticity, for example, is the CAP-TSD
(Computational Aeroelasticity Program-Transonic Small Disturbance) computer code (ref. 2.) The
code permits the calculation of unsteady flows about realistic aircraft configurations for analysis of
aeroelasticity in the flutter-critical transonic speed range. It can treat configurations with general
combinations of lifting surfaces and bodies.

The code uses a time-accurate approximate-factorization (AF) algorithm (refs. 3 and 4) developed
for solution of the three-dimensional unsteady transonic small-disturbance (TSD) equation. The AF
algorithm involves a time-linearization procedure coupled with a subiteration technique and is similar

to the unsteady full-potential algorithm reported by Shankar et al. (ref. 5.) References 3 and 4 show
the AF TSD algorithm is efficient for application to steady or unsteady transonic flow problems. It
can provide accurate solutions in only several hundred time steps to yield a significant computational
cost savings compared with alternative methods. This paper describes details of the governing flow
equations and boundary conditions, with an emphasis on documenting the finite-difference formulas
of the AF algorithm that were not reported in references 3 and 4.

Symbols

A coefficient in TSD equation (see eqs. (3))

B coefficient in TSD equation (see eqs. (3))

C coefficient in nonrefleeting far-field boundary conditions (see eq. (14a))

Ca angle-of-attack correction for bodies (see eqs. (12a) and (12b))

Cp pressure coefficient

Cpi isentropic pressure coefficient

Cps pressure coefficient due to change in entropy

Cpv pressure coefficient due to vorticity

Ct thickness correction for bodies (see eqs. (12a) and (12b))

Cv specific heat at constant volume

D coefficient in nonreflecting far-field boundary conditions (see eq. (14b))

E coefficient in TSD equation (see eqs. (3))

F coefficient in TSD equation (see eqs. (4) to (7))

F1 flux in L_ operator (see eqs. (69) and (70))



F2 flux in L_ operator (see eq. (95))

F3 flux in L¢ operator (see eq. (111))

f0 flux in time derivative in TSD equation (see eq. (2a))

fl flux in x-direction in TSD equation (see eq. (2b))

f2 flux in y-direction in TSD equation (see eq. (2c))

f3 flux in z-direction in TSD equation (see eq. (2d))

G coefficient in TSD equation (see eqs. (4) to (7))

go flux in time derivative in TSD equation (see eq. (132a))

gl flux in _-direction in TSD equation (see eq. (132b))

g_ sonic reference flux (see eqs. (144) and (146))

g2 flux in q-direction in TSD equation (see eq. (132c))

g3 flux in _-direction in TSD equation (see eq. (1325))

H coefficient in TSD equation (see eqs. (4) to (7))

i index in _- or x-direction

j index in 7- or y-direction
1

Kv = 1+--_q

k index in _- or z-direction

L_ differential operator in (-direction

Lu differential operator in q-direction

L_ differential operator in _-direction

Moo free-stream Mach number

Nz component of normal vector on body in x-direction (see eq. (11))

Ny component of normal vector on body in y-direction (see eq. (11))

Nz component of normal vector on body in z-direction (see eq. (11))

NXT number of grid points in _-direction

NYT number of grid points in q-direction

NZT number of grid points in _-direction

n index denoting time level

Q constant (see eq. (16a))

R residual (see eq. (131))

s local change in entropy from free-stream value

t nondimensional time

Us shock speed

Ul flow speed upstream of shock (see eq. (20))

Y speed term (see eq. (16c))
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V s sonic reference speed (see eq. (16b))

W defined in equation (84)

x physical coordinate in streamwise direction

y physical coordinate in spanwise direction

z physical coordinate in vertical direction

_b angle of attack of body

_b yaw angle of body

P wake circulation

9' ratio of specific heats

At nondimensional time step

/kt 1 step size from time level n to time level n + 1 (see eq. (65))

/kt 2 step size from time level n - 1 to time level n (see eq. (66))

At 3 step size from time level n - 2 to time level n - 1 (see eq. (67))

computational coordinate in vertical direction

7] computational coordinate in spanwise direction

computational coordinate in streamwise direction

a relaxation parameter (see eq. (31))

potential function (see eq. (23))

€ disturbance velocity potential

first intermediate disturbance velocity potential

second intermediate disturbance velocity potential

Cx disturbance velocity in x-direction

Cy disturbance velocity in y-direction

Cz disturbance velocity in z-direction

function representing stretching and rotating of vortex filaments associated with

entropy variation (see eq. (23))

Governing Equations

TSD Equation

The flow is assumed to be governed by the general-frequency, modified, unsteady TSD potential

equation, which may be written in conservation law form as

OYo+ OYl of2 of3
0-7 -_-x . _y + -O-z-z=0 (1)

where

fo -- -ACt - B¢z (2a)

fl = ECz + F¢ 2 + G¢ 2 (2b)

f2 = Cy + HCzCy (2c)

f3 = Cz (2d)
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The coefficients A, B, and E are defined as

A = M 2 B = 2M 2 and E = 1 - M 2 (3)

Several choices are available within CAP-TSD for the coefficients F, G, and H depending upon the
assumptions used in deriving the TSD equation. Briefly, the coefficients are referred to as "NASA
Ames" coefficients when defined as

1 1

F = -5( 7 + 1)M 2 G = 5( 7- 3)M 2 H : -(3'- 1)M2 (4)

and are referred to as "NLR" coefficients when defined as

1 2
1 [3-(2-_/)M2]M2_ G=--_M_ H -M 2 (5)F=-_ =

The "classic" coefficients are given by

1

F = -5( 7 + 1)M 2 G = 0 g = 0 (6)

and finally the coefficients for the linear equation are

F = G = H = 0 (7)

Coordinate Transformation

The unsteady transonic small-disturbance equation is solved numerically on a finite-difference
grid in a computational coordinate system (_, 77,_). The finite-difference grids in both the physical
and computational domains are contained within rectangular boundaries and conform to the leading
and trailing edges of the horizontal lifting surfaces. Regions in the physical domain are mapped into

rectangular regions in the computational domain using shearing transformations. For simplicity, no
shearing is performed in the vertical direction, so that pylons and vertical tails are approximated by
rectangular surfaces. The shearing transformation may be written generally as

= _(x, y) U ----Y _ = z (8)

where _, _/,and _ are the nondimensional computational coordinates in the x-, y-, and z-directions,
respectively. The TSD equation (eq. (1)) may then be expressed in computational coordinates as

Ot Ct . B¢_ + -_ E_x¢_ + F_z¢ _ + G (_y¢_ + ¢7) 2 + (_y¢_ + ¢_) + H_y¢_ (_y¢_ + ¢7)

+_ _(_y¢_+¢,j)+Y¢_(_y¢_+¢7) +_-_ ¢i =0 (9)

Boundary Conditions

The horizontal lifting surfaces are modeled (ref. 6) by imposing the following boundary conditions.

Flow tangency:

¢_z = 1_ + ft (10a)
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Trailing wake:

[¢z] = 0 (10b)

[¢z + Ct] = 0 (10c)

where f is a function describing the position of the lifting surface (including thickness, camber, angle
of attack, yaw angle, and dihedral) and [ ] indicates the jump in the indicated quantity across the
wake. The fiow-tangency condition is imposed along the mean plane of the respective lifting surface.
In equation (10a), the plus and minus superscripts indicate the upper and lower surfaces of the mean
plane, respectively. The wakes are assumed to be flat and horizontal.

Bodies such as the fuselage, stores, and nacelles are treated as follows. For a body at angle of
attack c_b and at yaw angle fib, the exact steady flow-tangency boundary condition may be written

gx(1 + Cx) + Ny(¢y + fib) + Nz(¢z + ab) = 0 (11)

where N(x, y, z, t) = 0 defines the body surface. Computationally, bodies are modeled with simplified
boundary conditions applied on a computational box that extends to the upstream and downstream

boundaries of the grid with a rectangular cross section rather than on the true surface (refs. 7
and 8.) The method is consistent with the small-disturbance approximation and treats bodies with
sufficient accuracy to obtain the correct global effect on the flow field without the use of special
grids or complicated coordinate transformations. As such, the approximations to the flow-tangency

boundary condition (eq. (11)) imposed on the computational box are

+ (Nx_ ±
Cy = -Ct \_y] - Caflb (12a)

for right or left surfaces and

for top or bottom surfaces. The parameters Ct and Ca are thickness and angle-of-attack corrections,
respectively, derived from slender-body theory to account for spatial differences between true and
computational body surfaces (refs. 7 and 8.) Also, in equation (12a), the plus and minus superscripts
indicate the right and left surfaces, respectively. In equation (12b), the plus and minus superscripts
indicate the top and bottom surfaces, respectively.

The conditions imposed upon the outer boundary of the computational region are similar to the
characteristic or "nonreflecting" boundary conditions reported by Whitlow (ref. 9.) The conditions
employed here are given by the following.

Upstream:
¢ = 0 (13a)

Downstream:

+ €* + Cx = 0 (13b)

Above:

De, + Cz = 0 (13c)

Below:
D

_-¢t - Cz = 0 (13d)



Right spanwise:

Dct+ Cy =- 0 (13e)

Left spanwise (for full-span modeling):

Dct - Cy = 0 (13f)

Symmetry plane (for half-span modeling):

Cy = 0 (13g)

"where

C = E + 2Fez (14a)

D = + (14b)

Entropy Model

An entropy model was developed for the AF algorithm (ref. 10), similar to that of reference 11,
that includes (1) an alternative streamwise flux, (2) an entropy correction in the pressure formula,
and (3) a modified wake boundary condition to account for convection of entropy. In this section,
the entropy model is described.

Alternative streamwise flux. The entropy model is formulated by first replacing the
streamwise flux fl (eq. (2b)) in the TSD equation with an alternative flux given by

fl = (7 + I)M2Q (VVS- Iv2) +G¢ 2 (15)

where

Q=L (_/+l)M2 J (16a)

V s _ Q2 _ 1
2Q (16b)

V - (1 + Q)¢z
1 + Cx + Q (16c)

Pressure correction. The pressure formula is modified to include entropy effects according to

Cp = C,, + Cps (17)

where Cpi is the isentropic pressure coefficient and Cp_ is the pressure coefficient due to the change
in entropy. As reported in reference 10, Cps is given by

-2 8

eva = _,(-y- 1)M 2 Cv (18)
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where s is the change in entropy from the free-stream value. Equation (18) obviously requires the

determination of entropy along the surface of the geometry being considered. This first requires
the determination of shock location and then the calculation of the entropy jump across the shock.

The shock location is easily determined since most TSD algorithms use type-dependent switching
to capture shocks and to properly treat regions of subsonic and supersonic flow. The entropy jump
is computed with the Rankine-Hugoniot shock jump relation:

s__= ln(7+ 1)u21- (7- 1)Q 2 _ 71n_ 2 (19)

where

ul=l+Cx-Us (20)

In equation (20), Ul is the flow speed upstream of the shock and Us is the shock speed. In the present
formulation, the entropy is convected downstream from the shock according to

Os Os

0-/+ =0 (21)

The correction to the pressure formula to include entropy effects (eq. (17)) does not directly affect
the flow field. The effect on the flow field is produced by the modified wake boundary condition.

Modified wake boundary condition. The wake boundary condition requires that the pressure
be continuous across the wake. Since the pressure formula (eq. (17)) includes a term due to entropy,

the wake boundary condition must be similarly modified as

1 ACp_ (22)Ft + Fx =

where A represents the jump across the wake. In equation (22), ACps is determined by first
convecting the entropy along the wake and then computing Cp_ with equation (18). The nonzero
right-hand side of equation (22) thus modifies the circulation distribution F.

Vorticity Model

A vorticity model was developed for the AF algorithm (ref. 10) similar to that of reference 12.
In this section, the vorticity model is described in detail, including (1) a modified velocity vector
that in turn modifies the TSD equation, (2) a pressure formula correction for vorticity effects, and

(3) the resulting wake boundary conditions.

Modified velocity vector. The vorticity model is formulated by first writing the velocity vector
as the sum of potential and rotational parts according to

U = V_ 1 s V9 (23)
7-1Cv

In equation (23), the first term is the gradient of a scalar potential • and the second term is the
product of the change in entropy s and the gradient of the function 9. The function 9 is a measure
of the stretching and rotating of vortex filaments associated with entropy variation (ref. 12). In the
present algorithm, the rotational part of the velocity vector is assumed to occur only in the region
downstream of shocks. Further assuming that the entropy convects with the free stream and that

the shock curvature is negligible implies that

_ 0909 1 09 _ 0 -- = 0 (24)Ox N- oz
7



These assumptions eliminate the variable _ from the model and leave only the change in entropy to
be determined throughout the flow field. In a steady flow, entropy is constant along streamlines and
changes only through shock waves. The entropy jump is computed along shocks with the Rankine-
Hugoniot relation (eq. (19)). Then, for simplicity, the grid lines are assumed to approximate the
streamlines of the flow, which is consistent with the small-disturbance approximation. The entropy
is then convected downstream along the grid lines for unsteady applications (eq. (21)) or is held
constant along the grid lines for steady applications.

The modified velocity vector in turn modifies the TSD equation because the streamwise distur-
bance speed u = Cz is now given by

1 s
= (25)

u Cx "y(')'- 1)M 2 cv

The new TSD equation has the same conservation law form as equation (1), with new fluxes defined
by simply replacing Cx by the modified speed given in equation (25).

Pressure correction. The pressure formula must also be modified when vorticity effects are

included in the model. In general form, the pressure coefficient may be computed from

Cp = Cpi + Cps + Cp, (26)

where Cpv is the pressure coefficient correction due to vorticity. The correction due to vorticity
approximately cancels the correction due to entropy, and thus the pressure coefficient Cp is given by
the isentropic formula. At the TSD equation level, this is clearly demonstrated by first considering
the general form of equation (17). Assuming the first-order small-disturbance pressure formula for

Cpi , defining Cps as given by equation (18), and replacing Cx by the modified disturbance speed of
equation (25) yields

2 s 2 s
- + (27)

Cp = -2€t - 2€x _'(')'- 1)M2_ Cv _'(_' - 1)M 2 Cv

Here the corrections due to entropy and vorticity identically cancel each other, and thus the pressure
coefficient is given by the isentropic formula in terms of the irrotational disturbance speed Cx-

Modified wake boundary condition. As with the entropy model, the wake boundary condition
in the vorticity model requires that the pressure be continuous across the wake. Since the pressure
is now given by the isentropic formula (eq. (27)), the wake boundary condition is identical to the
original condition given by

rt + rx = 0 (28)

Consequently, the modifications that are required when both entropy and vorticity effects are

included are the alternative streamwise flux given by equation (15) and the modified streamwise
disturbance speed given by equation (25).

Approximate-Factorization Algorithm

General Description

The AF algorithm consists of a time-linearization procedure coupled with a subiteration tech-
nique. For unsteady flow calculations, the solution procedure involves two steps. First, a time-
linearization step (described below) is performed to determine an estimate of the potential field.

8



Second, subiterations are performed to minimize linearization and factorization errors. Specifically,
the TSD equation is written in general form as

R(sn.l)=0 (291
where Sn+l represents the unknown potential field at time level n . 1. The solution to equation (29)
is then given by the linearization of equation (29) about S*:

¢=€*

In equation (30), S* is the currently available value of Sn+l and AS = Sn+l -S*. During convergence
of the iteration procedure, As approaches zero so that the solution is given by Sn+l = S*- In general,
only one or two iterations at a given time level are required to achieve acceptable convergence. For
steady flow calculations, iterations are not used since time accuracy is not necessary when marching
to steady state.

Mathematical Formulation

The AF algorithm is formulated by first approximating the time derivative terms (Stt and Szt)
by second-order-accurate finite-difference formulas. The TSD equation is rewritten by substituting
S = S*'t'A¢ and neglecting squares of derivatives of AS, which is equivalent to applying equation (30)
term by term. The resulting equation is then rearranged and the left-hand side is approximately
factored into a triple product of operators yielding

= (s*, s -l, sn-2)L_L_L( (31)

where the L_, L,7, and L¢ operators and the residual R are defined and described in subsequent
sections. In equation (31) a is a relaxation parameter that is normally set equal to 1.0. To accelerate
convergence to steady state, the residual may be overrelaxed using a > 1. Equation (31) is solved
with three sweeps through the grid by sequentially applying the operators as follows.

_-sweep:

L_ A¢ = -aR (32a)

r/-sweep:

= (32b)
(-sweep:

L¢ As = A_ (32c)

Time-Linearization Step

An initial estimate of the potentials at time level n. 1 is required to start the subiteration process.
This estimate is provided by performing a time-linearization calculation. The equations governing
the time-linearization step are derived in a similar fashion as the equations for subiteration. The
only difference is that the equations are formulated by linearizing about time level n rather than
about the iteration level. This is accomplished by substituting S = Sn . AS into the TSD equation
(eq. (1)) and neglecting squares of derivatives of AS, as done previously.

Difference Equations for the Disturbance Velocity

The AF algorithm is simplified greatly, both mathematically and numerically, by first determining

the disturbance velocity components Sx, S_, and S*- These components are required in numerous

9



places throughout the AF solution procedure at the half-node points (i:t=_/2,j, k), (i, j±V2, k), and
(i, j, kiY2). The finite-difference formulas that approximate the velocity components are presented
in this section. In these formulas the i, j, or k subscripts are often omitted for clarity. Also, the grid
metrics that appear in the formulas are defined in the following section.

At Half-Node Points (i±1/2, j, k)

All the expressions for the velocity components are straightforward central-difference approxima-
tions that are centered at the half-node points to be consistent with the treatment of the fluxes in

the AF algorithm. For example, at half-node points (i-Y2, j, k), the x- and y-components of the
disturbance velocity are required. They are defined simply by

€* -- €i*--1 (33)=

¢, _ ¢* €* _ €* ¢* •
• z i-1 + i,j+: i,j-1 . i-lj+Z - ¢i-:,j-1 (34)

¢y -12o= Qi-ll2j i-1 2('Tj+z- ,Tj-:)

If vorticity effects are included, then the x-component is defined by

• z i-I 1 . (35)
Cxi-'/2'J = _xi-'/2Z _i _i-1 27(7 - 1)M2 i i-1

Formulas for the components at (i.g2, j, k) are determined from equations (33) to (35) by

incrementing the i index by one. Also, in the symmetry plane (normally taken to be j = 1)
the y-component of the disturbance velocity is set equal to zero to impose the symmetry condition

(eq. (13g)). Namely,

€;,-1/2j = 0 (36)

Furthermore, the y-component of the disturbance velocity must be defined differently to account for
the flow-tangency condition (eq. (12a)) for bodies. The side surface of the computational box that is
used to model a body, for example, is located an equal distance between grid planes in the spanwise

direction (i.e., between planes j and j - 1). For grid points in the plane j, which is adjacent to
the side surface, the y-component of the disturbance velocity is defined as the weighted average of
values at j+1/2 (determined by finite differencing) and at j-Y2 (given by the boundary condition).
The resulting formula is

, _ 7]j -- V]j_ 1 1 ( €* - €* €*- *

CYi-1/2d 7]j+l..... -- ?Tj-1 2 _Yi'J+l i,j+l_i _i-li-l'j+l . _Yiz z,3_i----_i-l¢i-l'J

¢* -- ¢*" ¢i*--1,j+l -- ¢i*.-1,j+ i,j+_____l_,3 + __ __
,Tj+: - ,Tj ?j+: - ,Tj )

rlj+: -- rlj Cti . Cail_b . Cti-1 . Cai_l_b (37)

Similarly, for a full-span configuration, the y-component of the disturbance velocity is defined
differently to treat the left side surface (located between planes j and j + 1). Hence, for grid
points in the plane j that is adjacent to the left side surface,

10



, = _j+l--_j 1( €*'-¢*_,1i-l,j ¢*'-1-- *CYi-ll2d _j+l -- _j_l 2 _Yid _i _i-1 _t__yi,j_ 1 _,2 ¢i-l,j-l_i_l

¢, _ ¢, ¢* _ ¢,+ _,j i,j-1 + i-l,j i-l,j-1 ]r]j- _j-1 _j r]j-1

_J:__J--___! [CtiI_yyl-_J_Cai_bnUCti_lI_y I - _t_Cai_l_b] (38)_j+l - _j-1 i i-1

At Half-Node Points (i, j4-_/2, k)

At half-node points (i, j-1/2, k) the x- and y-components are defined by

¢*+l,j -- ¢*-l,j -t- ¢_+l,j-1 -- ¢*-l,j-1 (39)
€_ij-1/2= _xi,_-l/2 2(_i+1- _i-1)

, ¢* _ • €, -¢* ¢*-€*
CYi,j-1/2 = _Yid-1/2 i+l,j 4i-l,J2 (_i-t-1"j- i+l,j-l_i_l) i-l,j-1 _t_ z,2 i,j-1 (40)-- ?lj --_j-1

If vorticity effects are included, then the x-component is defined by

4" 4" -4"4_+l,j- i-l,j + i+l,j-1 i-l,j-1
4;i,j-1/2 = _xi'j-1/2 2 (_i+1 -- _i--1)

- + (41)
2^/('_-- 1)M 2 E j j-1

Formulas for the components at (i, j+Y2, k) are determined from equations (39) to (41) by
incrementing the j index by one. Also, the formulas need to be modified to again account for
the symmetry condition (j -- J; normally taken to be J = 1). At j = J, the x- and y-components
become

4*X,,g_l/2= 4;i,g+1/2 (42)

4;i,J_112 = --4;i,J+112 (43)

Furthermore, both the x- and y-components of the disturbance velocity must be defined differently
to account for the flow-tangency condition (eq. (12a)) for bodies. For half-node points (i, j-Y2, k)
that lie on the right side surface of the computational box, a one-sided formula is used for the
x-component given by

/
4" --4* 4" --4*i-l,j+l '_1

| _j+___ll_-_.__j--l._ x i+l,j i-l,j _j _ _Tjv_jl i+l,j+__.._l
4*xiJ-1/2 -- 2 k _'/j+l -- _Tj i,j _i+1 -- _i-1 r]j+l -- r/j _xi'j+l _i+l )

1 ¢_+l,j -- 4;- 1,j

and theboundaryconditionisusedforthey-componentgivenby

. (Nx _ + _ Cai]_b (45)
4yi'J-1/2 = -C$i _X-_y ] i

11



For a full-span configuration, similar changes are required. For half-node points (i, j+1/2, k) that lie
on the left side surface of the computational box,

• ¢, ¢* -€*
1 (r/j+l-?/j_ 1 dPi+l,j-- i-l,j 7lj_+l_lJ_xij_ 1 i+l,j-____l i-l,

_)xi'j+l/2 -- 2 _ _j -----_-1 _xi'j _--_+1:_-_-1 flj -- _j-1 ' _/+1 )
1 €* - ¢*

i+l,j i-l,j (46)

• (Nx)--Cai_ b (47)Cyij+l/2=-Ct_ _ i

At Half-Node Points (i, j, k+1/2)

At half-node points (i, j, k-1/2) only the z-component of the disturbance velocity is required. It
is defined simply by

¢* *
, i,k - ¢i,k-1 (4s)

CZk-I/2 -- _k -- _k--1

The formula for the z-component at (i, j, k+l/2) is determined from equation (48) by incrementing the
k index by one. The z-component of the disturbance velocity, however, needs to be defined differently
to account for the lifting-surface flow-tangency and wake boundary conditions. The lifting surfaces
are located an equal distance between grid lines so that in the plane directly above the surface the

CZk_l/2 formula of equation (48) is replaced by (f+ + ft) n+l and in the plane below the surface the

Czk+l/2 formula similar to that of equation (48) is replaced by (f# + ft) n+l. For the wake boundary
condition the solution procedure is modified by requiring that the disturbance velocity in the vertical

direction be continuous across the wake (eq. (10b)). This condition is imposed by defining

Czk-_/2= Ck- Ck-1

at the grid points in the plane above the wake and by defining

k+l -- Ck

¢zk+1/2= 6+1- 6 (50)

at grid points in the plane below the wake. Furthermore, the z-component of the disturbance
velocity must be defined differently to account for the flow-tangency boundary condition (eq. (12b))
for bodies. The top surface of the computational box that is used to model a body, for example, is
located equidistantly between grid planes in the vertical direction (i.e., between planes k and k- 1).
Hence, for grid points in the plane k that is above the top surface,

• (Nx'_+-Caia b (51)
CZk-1/2 = -Cti _k--_z ,] i

Similarly, the bottom surface of the computational box is located equidistantly between grid planes

in the vertical direction (i.e., between planes k and k + 1). Hence, for grid points in the plane k that
is below the bottom surface,

¢zk+1/2=-Cti _ i

12



Difference Equat'ions for the Grid Metrics

The finite-difference equations for the grid metrics are presented in this section. These equations
were derived to be consistent with the differencing of the disturbance potentials, such that if the
AF algorithm were a full-potential solver rather than a TSD solver, a uniform flow would be an
exact result of the finite-difference formulas for the velocity components (presented in the previous
section). The grid metrics are required in numerous places throughout the AF solution procedure

at grid points (i, j, k) and at the half-node points (i:kY2, j, k) and (i, jr]:l/2, k).

At Grid Points (i, j, k)

At grid points (i, j, k), the metrics are defined to be

_i+1 -- _i-1 (53)
_xi, j : Xi+l,j -- Xi_l, j

_Yi,j = _i.l -- _i-1 Xi,j.l -- xi,j-1 (54)
Xi.l,j -- Xi-l,j ?]j.l -- 7]j-1

However, at the upstream (i -- 1) and downstream (i = NXT) boundaries of the grid,

_,,_= 1 (55)

_Y,,i= 0 (56)

Along the symmetry plane (j = 1),

_Yi,j = _i.l -- _i-1 Xi'j+l -- Xi'j (57)
Xi+l,j -- Xi-l,j Ilj.l -- _j

and along the far-spanwise boundary (j - NYT),

_Yi,j ---- _i.l -- _i-1 Xi,j " Xi,j-1 (58)
Xi+l,j -- Xi-l,j _j -- _j-1

At Half-Node Points (i±I/2, j, k)

At the half-node points (i-1/2, j, k) the metrics are defined to be

_i- _i-1 (59)
_xi-1/2'J -- Xi,j -- Xi-l,j

_i -- _i-1 Xi,j.l -- Xi,j-1 q- Xi-l,j.l -- Xi-l,j-1 (60)
_Yi-1/2,j "_ Xi,j -- Xi-l,j 2 (r]j+ 1 -- ?Tj-1)

However, along the symmetry plane (j ----1),

_i -- _i-1 Xi,j+l -- Xi,j + Xi-l,j+l -- Xi-l,j (61)
_yi-1/2,_= z_,j- _i-1,_ 2(_j+l - nj)

and along the far-spanwise boundary (j -- NYT),

_i - _i-1 xi,j - xi,j-1 + Xi-l,j - Xi-l,j-1 (62)
_Yi-1/2,j = Xi, j -- Xi--1, _ 2 (_j -- _j--1)

13



At Half-Node Points (i, j4-V2, k)

At half-node points (i, j-Y2, k), the metrics are defined to be

2 (_i+1 -- _i-1) (63)
_xi,j_i/2 = Xi+l,j -- Xi_l, j q- Xi+l,j_ 1 q- Xi_l,j_ 1

-2 (_i+1 - _i-1) xi,j - xi,j-1 (64)
_Yi,j-1/2 = Xi+l,j _ Xi_l,j .q_Xi+l,j_l .q_Xi_l,j_l rlj -- rlj_ 1

Difference Equations for the Left-Hand-Side Operators

The finite-difference equations for the L_, Lu, and L¢ operators are presented in this section,
including the modifications that are required to impose the symmetry plane, lifting-surface flow-
tangency, and wake boundary conditions and the flow-tangency conditions for bodies. Also, the
time derivatives in the AF algorithm have been written for variable time stepping to allow for step-
size cycling to accelerate convergence to steady state. Because of this, three different time steps are
required as defined by

Atl ----tn+l -- tn (65)

At2 = tn - tn-1 (66)

At3 = t n-1 -- t n-2 (67)

L5 Operator

The L_ operator is implemented by considering the _-sweep equation defined by

( B2Atl+At2At 0 Atl At2_ 0F 0)L_ A¢ = 1 + 2A "A-_I-+-A-_2' 2 _x_-_ -_ _z_-_ 1_--_
A¢ _R (68)

where, for the isentropic formulation,

F1 = E_z + 2f_z¢* + 2G_yCy + _2 (1 + He*) + H_y¢; (69)

for the nonisentropic formulation,

F1 = _z(7 + 1)M2QW (Y s - V) (1 - gvY) + 2e_yCy + _2_x(1 + He*) + g_yCy* (70)

and R is the residual, which is treated in a subsequent section. The first derivative in the L_ operator
is represented by a backward-difference formula, to maintain numerical stability, given by

0 2

0-'-_ (A¢) -- _i+1--_i-1 (A_i -- A_i-1) (71)

The other derivative in the L_ operator is treated by first considering the flux F1 as being the sum
of two fluxes, so that

0 0 (9 EO (9 (9 CD (9

_--_FI_--_ (A¢) ---- _--_F_ _-_ (A¢)q- _-_F_ _-_ (A¢) (72)
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where

* _2 (1 +He*) (73)f_cD= (2C+g)_¢_ +

and F1EOis taken to be one of two different formulas depending upon whether entropy effects are
included. For example, in the original isentropic formulation,

F1EO= E_x + 2F_x¢* (74)

and in the nonisentropic formulation,

FEO = _z(7 + 1)M2Q W (Vs - V) (1 - KvV) (75)

Regardless of which definition is selected, FEO is either centrally differenced at subsonic points or
backward differenced at supersonic points according to the Engquist-Osher (EO) type-dependent

mixed-difference operator (ref. 13), and F1CDis always centrally differenced (CD) independent of
the local speed of the flow. Specifically, the second derivative of the first flux is represented by the
following EO type-dependent formula:

0-EO0 _ 2 [(I_Q+I/2) EO A¢i+I--A¢iF_i+I/2__-_1_ -_ (A¢ ) _i+1-- _i-1 _i+1 _i

-t- (2€i_1/2 1) EO A¢i -- A_i-i F EO A_i-1 :/k_i-21 (76)-- Fi'-'/2 _= _-_-1 - Q-3/2 1,-3/2 _-_-1-_i-2 J

where in the isentropic formulation,

EO (77)
F_i:.l/2 = E_xi_l/2, j -t- 2F_xi_l/2,jCXi_l/2,j

0 (¢*,-1/:j-< (783)
_i-1/2

1 > (78b)
and the sonic streamwise speed ¢s is defined by

-E
¢s (79)=-_

In the nonisentropic formulation,

F1Ei?l, 2 =- _Xi_l,2,j(" / "4- 1)i2ooOWi_l/2,j (V s- Vi_l/2,j) (1- KvVi_l/2,j) (80)

0 (Vi-1/2,j -< V s) (8131
_i--1/2 ----

1 (V/_1/2, j > V s) (81b)

¢;,-1/2j (83)
Vi-1/2'J -_ 1 + Kv¢*i_l/2d

1 (84)
Wi-1/2'J : 1 + Kv¢*i_l/2j
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Recall from equations (168) and (16b) that

[2+ (_- 1)M_,1/5O [ ('_ + 1)M 2

V s _ Q2 _ 1
2Q

The derivative involving the second flux (F1CD) is represented by a central-difference formula
involving terms evaluated at the half-node points in the _-direction according to

OFCDO(A¢)-- 2 (FCD A¢i+I - A¢i - FCD A¢i - A¢i-1) (85)O_ O_ _i.l -- _i--1 1i+1/2 _i-t-1 -- _i 1i-1/2 _i -- _i--1

where

CD (2G H)_yi_l/2,jOyi_l/2,j* _Yi-1/2,j \(1F_,_I12
= H *+ + + Cxi-1/2,j) (86)

_Xi-1/2,j

The derivative involving the second flux at the symmetry plane (normally taken to be j = 1),

however, needs to be defined differently to impose the symmetry condition. This results from
requiring that

€;,-1/2,;= o (87)
which implies that

0 CD 0

for grid points in the symmetry plane.

The _-sweep equation may then be rewritten for solution in quadradiagonal form as

bi A_i_ 2 + Ci A_i_ 1 -}-di A¢i -}- ei A¢i+I ---- -Ri (89)

where

bi _ -At1 At2 2 1 EO
2A _xi'J _i+1 -- _i-1 _i-1 -- _i-2 _i-3/2F_i-3/2 (90a)

B 2 At1 + At2 2

ci -- 2A At1 + At2 At2 _xi,j _i+1 -- _i-1

[ 1 (2Q_U2 1) EO 1 EO 1At1 At2 _ _2 _i - _i-1 - Fli-1/2 + _i-1 - _i-2 Ci-a/2F_i-3/2-t- _ _xi,j _i+1 _i-1

Atl At2 2 1 FC o (90b)
2A _xi,j _i+1 - _i-1 _i - _i-1 li-1/2

B 2 Atl+At2^_ 2

d_= 1+ _-A-_-+-Wi;"_2_,j _+_- _i-1

AtlAt2_ 2 [ 1 (I_Q+I/2) FEO 1 (2Q_I/2_I) FEO ]+ -_ _xi,j _i+l -- _i-i _iTi--- _i 1i+1/2 _i --_i-1 1i-1/2

1 FcD ]Atl At2_ 2 1 FCD + 1i-1/2J (90e)"_- -2A _xi'j _i+1 - _i-1 _i+; - _i li+1/2 _i - _i-1
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Atl At2 2 1 (1- Q+1/2) FEOei -- _ "_xi,j _i+1 -- _i-1 _i+;--- _i 1i+1/2

At1 /kt2 _ 2 1 CD (90d)
5_ Cx_,j_i+1- _i-1_i+[--_iF_+1/2

Note that it is more efficient computationally to first calculate bi, ci, and ei and then evaluate the
main diagonal according to

di = 1 - bi - ci - ei (91)

Also, bi = 0 for a purely subsonic flow, so that further computational efficiency may be obtained by

using a tridiagonal inversion procedure to calculate AS rather than the more costly quadradiagonal
procedure that is necessary for mixed subsonic-supersonic type flows.

Modifications to the L_ operator are required to accommodate the flow-tangency boundary
conditions for bodies. For example, inside the computational box that is used to model a body
there is, of course, no flow. Therefore, at grid points that lie inside,

A¢ = 0 (92)

which results in the following quadradiagonal coefficients and residual (or right-hand side):

bi = 0 (93a)

ci = 0 (93b)

di = 1 (93c)

e i = 0 (93d)

Ri = 0 (93e)

L_ Operator

The Lu operator is implemented by considering the 7j-sweep equation defined by

L_ A_= (1 _z_At12AAt2 0 00-r]-F2_-_) A_ = A¢ (94)

where

1 (1 + He*) (95)F2=_
The spatial derivative of the L_ operator is represented by a central-difference formula involving
terms evaluated at the half-node points in the _-direction.according to

0 0 (AS) -- 2 (F2i/+l/2A_J+l - A_j r_ /k_j - A_j_l _o_]F2-_ 7]j+l - _]j_1 , T]j+I _j -- r2'O-1/2 V]j T]J-1 ] (96)

where

1 (1 -[- H¢;i,j_l/2) (97)
F2i,j_l/2 -- _zi,j_l/2

The r]-sweep equation may then be rewritten for solution in tridiagonal form as

cj + + = (98)
17



where

At 1 At 2 2 1

cj = --_z_,j 2A _?j+l --_j-1 _j -- rlj--1 F2i'J-1/2 (99a)

At 1 At 2 2 1

= F2ij+l/2dj 1 + _zi,j 2A Wj+l - Wj-1 _j+l - Wj '

At1 At2 2 1

+ _zi,j 2A _/j+l - Wj-1 Wj- Wj-1F2ij-1/2 (99b)

At1 At2 2 1

ej _. -_xi,j 2A _j+l - _j-1 _j+l- _j F2ij+l/2 (99c)

Note that it is more efficient computationally to first calculate cj and ej, and then evaluate the main
diagonal according to

dj = 1 - cj - ej (100)

A special L_ operator is defined to impose the symmetry condition (j -- J; normally taken to be
J -- 1). This is accomplished by requiring that

The spatial derivative of the L_ operator is then given by

0 0 2 A_j+I- A_j (102)

which results in an upper bidiagonal q-sweep equation at the symmetry plane defined by

cg = 0 (103a)

At1 At2 2

dj = 1 + _xi,j 2A (r/J+l _ r/J) 2 F2i,j+l/2 (103b)

At1 At2 2
2F2i j+l/2 (103c)

ej = --_xi,j 2A (r/j+l -- _j) ,

Modifications to the L_ operator, similar to the modifications made to the L_ operator, are also
required to accommodate the flow-tangency boundary conditions for bodies. For grid points that lie
inside the computational box that is used to model a body,

AS -- 0 (104)

which results in the following tridiagonal coefficients and right-hand side:

cj=0 (105a)

dj = 1 (105b)

ej = 0 (105c)

Rj = 0 (105d)
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For grid points in the plane j that is adjacent to the right side of the computational box to which
the body boundary conditions are applied,

A j-1/2=0 (106)

which results in the following tridiagonal coefficients:

cj =0 (107_)

dj = 1 + {xi,yAtl At2 2 1
2A 7/J+ 1 _ r/J -1 r/J+ 1 _ rlJ F2_+1/2 (107b)

ej = -_xi,j Atl At2 2 1 F2j+I/2 (107c)2A _?j+l - _?j-1 _j+l - _/j

For full-span configurations, a similar modification is required to treat the left side of the computa-
tional box. For grid points in the plane j that is adjacent to the left side,

_yy A j+l/2 = 0 (108)

which results in

cj = -_xij Atl At2 2 1
2A 7/j+l - 71j-1 yj - _j-1 F2__1/2 (109a)

dj = 1 + _xi, j AtI At2 2 1
2A r/j+l -- _Tj-1 71j -- _Tj-1F2j-1/2 (109b)

ej = 0 (109c)

L¢ Operator

The L¢ operator is implemented by considering the _-sweep equation defined by

_ At1 At2 0 F 0"_L(A¢= l-_x ?] _ 3N )A¢=A S (ii0)

where
1

F3 = _x (111)

In the presentimplementationofthe AF algorithm,there isno gridshearingin the verticaldirection.
Consequently,the metric_z is independentof the (-direction,and the _xin the numeratorof the L¢
operator identically cancels the _x in the denominator of F3. The spatial derivative in the operator

is thus representedquite simplyas

02 2 [ nCk+l - ACk ACk -- ACk-1] (112)
_-2(A¢)--¢k+1_¢k_1[ ¢k+i Ck - _ ¢k-i J

The _-sweep equation may then be rewritten for solution in tridiagonal form as

Ck ACk_l . dk ACk q- e k ACk+l = A¢ (113)
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where

At1 At2 2 1 (l14a)
ck = -- 2A (k+l -- _k-1 _k -- _k-1

dk = 1 + At1 At___________22 1 + At1 At_________22 1 (114b)
2A _k+l -- _k-1 _k+l -- _k 2A _k+l -- _k-1 _k -- _k-1

At1 At2 2 1 (114c)
ek = 2A _k+l -- _k-1 _k+l -- _k

Again note that it is more efficient computationally to first calculate ck and ek and then evaluate
the main diagonal according to

dk = 1 - ck - ek (115)

The L¢ operator, however, needs to be defined differently to account for the lifting-surface flow-
tangency and wake boundary conditions. Further, the operator must be modified in both the time-
linearization and the subiteration step. First consider the modification in the time-linearization step.

The lifting surfaces are located equidistantly between grid lines so that in the plane directly above
the surface the derivative in equation (112) represented by

is replaced by

ft) _+1(::+ -(::+:0°
and in the plane below the surface the derivative in equation (112) represented by

is replaced by

(f_ . ft)n+l- (fx + ft)n

Sincethesenew terms areknown quantities,theyarebroughtto the right-handSideofthe _-sweep

equation to create bidiagonal equations. For example, for grid points in the plane above the surface

the tridiagonal coefficients become

ck=O (116a)

dk = 1 + Atl__At2 2 1 (l16b)
2A (k+l - ¢k-1 (k+l -- Ck

At1 At2 2 1 (116c)
ek = 2A . _k+l -- _k-1 _k+l -- _k

and the corresponding right-hand side of the _-sweep equation is

For grid points in the plane below the surface the tridiagonal coefficients become

Atl At2 2 1 (l17a)
ck = 2A _k+l -- _k-1 _k -- _k-1
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At1 At2 2 1
dk -- 1 . -- (l17b)

2A Ck+l- Ck-:Ck- ¢k-1

ek ---0 (117c)

and the corresponding right-hand side of the _-sweep equation is

A_ Atl At2 2 [( n+X n]2A _'k+l--(k-I f_ . ft) --(Z . ft)

Now consider the modification in the subiteration step. Here, similar changes are made to

replace the derivatives in equation (112) by the difference in downwash at time levels n . 1 and * for
grid points in the planes above and below the lifting surface. This results in the same tridiagonal
coefficients as derived in equations (116) and (117). However, the right-hand side of the _-sweep

equation remains simply A¢ since

ft)(f+ + f,)* = (f+ . (118a)

• ft) n+l(f_ + ft) = (fS + (l18b)

The L¢ operator is also modified to account for the wake boundary condition in a way similar to
that for the flow-tangency condition. To accomplish this, the wake circulation F is first calculated
from equation (10c), which is equivalent to

Fn+l F n+l = 0 (119)
Xi_l/2 q- ti_l/2

This equation is discretized with second-order-accurate finite-difference approximations for the space
and time derivatives, which results in

n+l n+l 1 (2 At1 + At2 Fn+l - F n At1 Fn - Fn-1Fi - Fi_ 1 +
'_xi-1/2'J _--_-_-_i----1 2 _ "A--_I-.--AT2 X_I Atl . At2 At2

_ F n F n-1 '_2 At: + At2 Fn+l Fn_l At: i-1 -- i-1

+ At1 + At2 At1 Atl + At2 £_2 ) = 0 (120)

The equation is solved for the unknown circulation Fn+l, which yields

( 1 12Atl+At2 1 )-1 i.z Fn-+:rn+l= _xi-'/2,J _i - _i_1 . 2 At1 . At2 -_1 _ i-l/2'Jd-----_i-I

1 /' 2 Atl + At2 Fn Atl F n - Fn-1

+2_ Atl+At2 At1 Atl+At2 At2

,.2 Atl + At2 Fn+: - r_- 1 At1 i-1 - -i-1 (121)
+ Atl . At2 Atl -- Atl-+-At2 -A--t:

..... n+l 11Through use of equation (121), the circulation is convected downstream by calculating F i for a
grid points downstream of the trailing edge, beginning with the trailing-edge value Fte= ¢+ - ¢_e"
The wake circulation is then incorporated within the solution procedure by requiring that the
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disturbance velocity in the vertical direction be continuous across the wake (eq. (10b)). This
condition is imposed by defining

0_2 (A¢) - 2--'ACk+I--ACk--ACk--(ACk-I--Fn+I.F*) (122a)¢k+1 ¢k-1 ¢k+1- Ck Ck- ¢k-1

at grid points in the plane above the wake and by defining

0-_2(A¢) -- _k+l--_k-1 -_+1_-2_; -- _k--_k-1

at grid points in the plane below the wake. Since the circulation terms are known quantities, they are
brought to the right-hand side of the (-sweep equation. The tridiagonal coefficients of the _-sweep
are unchanged consequently, and the right-hand side becomes

A_ - Atl At2 2 1 (F n+l- F*) (123a)2A _k+l _k-1 _k -- _k-1

at the grid points in the plane above the wake and

A_ + Atl At2 2 1 (F n+l- F*) (123b)2----A--_k+l -- _k-1 _k+l 2 _k

at grid points in the plane below the wake.

The convection of entropy is governed by the same type of equation as the convection of
circulation. Namely, the entropy is determined by

8n+l 8n+l = 0 (124)
Xi_l/2 -1- ti_l/2

Approximating the derivatives of equation (124) in the same way as the derivatives of circulation
results in

( 1 12AtlAt2 1 )-1[ 8n+li-18_-t-1---- _Zi-1/2'J _i --_i-1 + 2 Atl + At2 At1 _Xi-1/2'J _i -- _i-1

1( 2Atl+At2 sn At1 sn -- sn-1+ At1 + At2 At1 At1 + At2 At2

2 Atl + At2 sn_+ll-- 8n_l Atl _i-1 -- si-1

+ At1 + At2 At1 -- Atl + At2 -A--t2 (125)

Through use of equation (125), the entropy is. convected downstream by calculating s] +1 for all grid
points downstream of shocks beginning with the value at the shock determined by the Rankine-
Hugoniot shock jump relation (eq. (19)).

Modifications to the L¢ operator, similar to the modifications made to the L_ and L_ operators,
are also required to accommodate the flow-tangency boundary conditions for bodies. For grid points
that lie inside the computational box that is used to model a body,

A¢ = 0 (126)
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since there is no flow. This results in the following tridiagonal coefficients and right-hand side:

ck = 0 (127a)

dk = 1 (1275)

ek = 0 (127c)

Rk = 0 (127d)

For grid points in the plane k that is above the top surface of the computational box,

(A¢)k_l/2 = 0 (128)

which results in the following tridiagonal coefficients:

Ck = 0 (129a)

dk = 1 + AtlAt2 2 1 (129b)
2A _k+l -- _k-1 _k+l -- _k

Atl At2 2 1 (129c)
ek -- 2A _k+l -- (k-1 (k+l -- _k

Similarly, for grid points in the plane k that is below the bottom surface of the computational box,

Atl At2 2 1 (130a)
Ck= 2A _k+l -- _k-1 _k -- _k-1

dk = 1 + AtlAt________j22 1 (130b)2A ¢k+1- ¢k-1Ck- ¢k-1

ek = 0 (130c)

These modifications (eqs. (126) to (130)) are made for both the time-linearization and subiteration
steps of the AF algorithm since the current implementation can only treat steady boundary
conditions for bodies.

Difference Equations for the Residual

The finite-difference equations for the residual are presented in this section. These equations are
derived by first rewriting the residual in the following general form:

R=-_z Atl At2 (Ogo Ogl Og2 Og3"_ (131)2-----T-\ ot +-gg ]
where

go= -_€; - B¢_
(132a)

gl = E¢; +F(¢:)2+G(¢y)2+ _ (1+H¢*)€;
(132b)

1 (1 + He*) €_ (132c)
g2= _z
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1

= _x¢* (132d)
g3

However, in the nonisentropic formulation,

+ + + +
Also, the spatial fluxes gl, g2, and g3, which are in the _-, 7/-, and _:coordinate directions, respectively,
have been written in terms of the x, y, and z physical coordinates for convenience and computational
efficiency (as is made evident in the following subsections).

Ogo/Ot Term

The Ogo/Ot term is treated by considering separately each of the two derivatives that make up

this term in a manner that is consistent with the treatment of similar terms in the L_ operator. In
other words, the time term is expressed as

Ogo A
* B *

-- Ctti -- ¢_ti (133)
Ot _xi,_

where the ¢*tti and (9*{ti derivatives are then approximated by finite-difference formulas that account
for variable time stepping given by

Ct*ti-Atx+At2[At2 Atl +2At2 At2¢_-(Atl+At2)¢n+Atl¢_-l]AtlAt2

Atl [ 2 At3 cn _ (At2 + At3) cn-1 + At2 ¢n-2

At2 [At2 + At3 At2 At3 (134)

_ \ _ _ 1)] :(135)Atl + At2 At2 .-

Note that the spatial derivative in ¢*_ti is backward differenced consistent with the treatment of the
similar term in the L_ operator. Furthermore, for time stepping involving a constant step size (i.e.,
At ----At1 = At2 = At3), equations (134) and (135) simplify to the more familiar formulas given by

Ct*ti= 2¢* - 5¢n +At24¢n-1 _ ¢.n-2_ (136)

2 3 (¢* - ¢*-i) - 4 (¢_" - ¢n-1) + (¢n-1 - ¢n-1 ) (137)
¢_ti = _i+1 --{i-1 2 At

Ogl/O_ Term

The Ogl/O_ term is treated by first considering the flux gl as being the sum of two fluxes, so that

Og-A= OgE-----_O+ OgCD (138)O_ 04 O_
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where
glEO= E¢; + F (¢;)2 (139)

for the isentropic formulation,

gEO = (7+ I)M2Q (VVS- Iv2) (140)

for the nonisentropic formulation, and

( y)2 {y (1 + H¢;) 0; (141)gic°=G¢ +g

In equation (139) or equation (140), gEO is either centrally differenced at subsonic points or backward
differenced at supersonic points according to the Engquist-Osher (EO) type-dependent mixed-

difference operator, and glCD is always centrally differenced (CD) independent of the local speed
of the flow. Specifically, the derivative of the first part of the flux is represented by the following EO
type-dependent formula:

[(O_ _i+X -- _i-1 1- Ci+l/2) EO (2€i-1/2 1) EO-- gli+1/2 + -- gli_1/2

__ EO (gi+l/2 2gi-1/2 ]ei_3/2gli_3/2 . -- . Ci_3/2) g_ (142)
.1

where, in the isentropic formulation,

EO ----E * , 2
gli_1/2 01i_1/2,j + F (¢Xi_l/2,j) (143)

0 !2,s< ¢_)
_i-1/2 _-

1 (+Xi_li2,j _ _)_)

and the sonic reference flux g_ is defined by

-E2 (144)g_ = E¢ s + F(¢S)2 _ 4F

In the nonisentropic formulation,

= V_ s 1V_
glE?l/2 ('7"b 1)M2Q ( i_l/2,jV - -_ i_l/2,j) (145)

0Ci_ll2, j :

1 (Vi_l/2, j _> V s)

(_*i-112,j
Vi-1/2,j

1 + Kv¢xi_l/2,j*

and the sonic reference flux is defined by

g[_ _,+1 2 s2 M_QV (146)
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The derivative of the second part of the flux is represented by a central-difference formula

involving the flux glCD evaluated at the half-node points in the _-direction according to

OgCD _ _2 [gCD _ CD
0_ _i+1 _i-1 _' li+I/2'J gli-1/2'J]

(147)

where

, 2 _Yi-1/2,j fl * *
gCD = G (¢Yi-1/2,j) + -- _ + gdPxi-1/2,j) (gYi-1/2,j (148)

li-x/2,j _xi_1/2,j

The OgCD/o_ term, however, is defined differently to impose the symmetry condition (normally
taken to be j = 1). This results from requiring that

¢_,-,12j = 0 (149)

which implies that

09C1D
- 0 (150)

for grid points in the symmetry plane.

092/0r 1Term

The Og2/O_ term is represented by a central-difference formula involving the flux g2 evaluated at
the half-node points in the _/-direction according to

000..___2_-. 2 (g2i,j+1/2 -- 92i,j_1/2) (151)Orj _j+l - r_j-1

where

-- H * * (152)1 (1 + qzij_l/2 ) ¢Yi,_-1/2
002i'j-112 _Xi,j_l/2

The Og2/O_ term, however, is defined differently to impose the symmetry condition (j -- J; normally
taken to be J = 1). Here,

¢;,,J-1/2 = - ¢;,,J+1/2 (153)

and

¢*xi,J-1/2= ¢*i,J+X/, (154)

These two conditions imply that

002i,J_1/2 = --002i,j+1/2 (155)

so that finally at the symmetry plane

092 2

0r/ _/J+l - UJg2i'J+U2 (156)

0003/0q Term

The 0003/0q term is represented by a central-difference formula involving the flux g3 evaluated at
the half-node points in the q-direction according to

0°03 -- £ (003i,j,k+1/2 -- 003i,j,k_1/2) (157)Oq qk4-1 qk-1
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where
1 ,

93i,j,k_1/2 -- _ii,f CZk_l/2 (158)

The Og3/O_ term, however, is defined differently when the lifting-surface fiow-tangency and wake
boundary conditions and the flow-tangency conditions for bodies are imposed. This term is defined
differently for grid points in the planes directly above and below the lifting surface and its wake and
directly above and below the computational surfaces used to model bodies, since the z-component
of the disturbance velocity (¢z) is modified there, as discussed in detail previously.

Difference Equations for the Far-Field Boundary Conditions

The finite-difference equations for the far-field boundary conditions are presented in this section.
These conditions involve the upstream, downstream, far-spanwise, upper, and lower boundaries of
the grid. All these boundaries except for the upstream boundary are represented by nonreflecting

conditions. At the upstream boundary the flow is assumed to be free stream, and consequently an
undisturbed flow condition is prescribed.

Upstream Boundary

The upstream boundary condition is implemented during the _-sweep of the AF solution

procedure to determine values of the intermediate potential ¢ on the extreme upstream plane of
grid points (i = 1). The boundary condition (eq. (13a)) is applied along the extreme grid plane,
which leads to the trivial equation

_¢ = 0 (159)

The equation may be written for solution in quadradiagonal form (eq. (89)) as

bi A¢i_2 + c i A_)-__1-1-di A¢-_ + ei A¢i+I = --/74

where

bi = 0 (160a)

ci = 0 (160b)

di = 1 (160c)

ei = 0 (160d)

/74 = 0 (160e)

Downstream Boundary

The downstream boundary condition is implemented during the _-sweep of the AF solution

procedure to determine values of the intermediate potential ¢ on the extreme downstream plane

of grid points (i = NXT). The condition (eq. (13b)) is applied midway between the extreme and
adjacent grid planes according to

Pi-112 (¢t)i_ll 2 + _xi-,,2 (¢<)i_112 =O (161)

where

1(-B Di-i/2 I (162a)Pi-1/2= +
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Di_l/2 -- -k (162b)

Ci_l/2 = E + 2F¢*i_l/2j (162c)

With second-order-accurate central-difference and one-sided-difference approximations used for the

space and time derivatives, respectively, the difference equation for equation (161) becomes

{ (n1p, [2zxtl+ zxt2(¢i-__i zxtl ¢_-€_
i-1/2 L-_--_1-_--_2 _, At1 At1 +At2 At2

-- cn ) I"¢n ¢n-1\1}Jr" [ Atl-']-At2 _ )k-'ti At l.At2 \ At 2 ]J

+_xi_1/2 _-1 ] = 0 (163)

By linearizing consistently with the _-sweep of the AF procedure, the difference equation may be

rewritten for solution in quadradiagonal form (eq. (89)) as

bi A¢i_ 2 q- ci A_i_ 1 q- d i A_i -4-ei A_i. 1 = -Ri

where

bi = 0 (164a)

2 At1 + At2 1

ci = 2 Atl (At1 + At2) Pi-1/2 - _xi-U2,j _i - _i-1 (164b)

2 Atl + At2 1 (164c)
di = 2 At1 (Atl + At2) Pi-1i2 + _xi-1/2'J_i --_i-1

ei = 0 (164d)

and

Pi-1/2 [2 Atl + At2 (€. _ cn "4-€i*1 -- _-1)Ri = 2 (A--_I_ht2) Atl

Atl n n *

At2 (¢i _¢n-1 _4_¢i_ 1 _ ¢n--1)] _4_qbXi_l/2 (164e)

After the C-sweep of the AF solution procedure is completed, the potentials on the downstream
boundary must be recomputed (since the potentials on the adjacent plane of grid points have changed
values because of the 7- and _-sweeps) according to

-1

A¢i = -_/(t74 + ci A¢i_I) (165)

Far-Spanwise Boundary

The far-spanwise boundary condition is implemented during the _?-sweep of the AF solution
procedure to determine values of the intermediate potential _ on the extreme spanwise plane of grid
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points (j = NYT). The condition (eq. (lae)) is applied midway between the extreme and adjacent
grid planes according to

1

where

Dj_l/2 = (4A + C_-1/2182_ 1/2 (167a)

Cj_I/2 = E + 2F0" 2 (1675)i,j-1/

With second-order-accurate central-difference and one-sided-difference approximations used for the

space and time derivatives, respectively, the difference equation for equation (166) becomes

( 1.__ ) (¢_ 1 _-1)]}

n ,• -- j-1 '- -- "-

€* -¢* + • _¢,
-_-_Yi,j-1/2 i+l,j i-l,j ¢i+l,j-1 i-l,j-1 _j _j-12 (_i+1 _i-1) -t- -- 0 (168)-- llj -- r/j-1

By linearizing consistently with the _?-sweepof the AF procedure, the difference equation may be
rewritten for solution in tridiagonal form as

cj A-@_ 1 + dj ACj . ej ACj+I = -Rj (169)

where

2 At1 + At2 1 (170a)
cj = 4 Atl (Atl + At2) DJ-1/2 rlj - _j-1

2 At1 + At2 1

dj = 4 At1 (At1 + At2) Dj-1/2 + (170b)Uj - rlj-1

ej = 0 (170e)

and

Dj-1/2 [2 Atl-t-At2 (¢_-¢y-t-¢__l-¢jnl)Rj = 4 (At1 + At2) Atl

At2Atl(¢3_¢]_ 1 +¢jn_l- ¢_n_-_)] +¢Yi,j-1/2 (170d)

After the <-sweep of the AF solution procedure is completed, the potentials on the far-spanwise

boundary (j = NYT) must be recomputed (since the potentials on the adjacent plane of grid points
have changed values because of the (-sweep) according to

--1 (Rj + ACj-1) (171)
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For full-span modeling, a similar boundary condition is imposed to determine values of the
intermediate potential ¢ on the j -- 1 plane of grid points. The condition (eq. (13f)) is applied
between the extreme (j = 1) and adjacent grid planes according to

1D

where

(nj+l/2 = 4A + Cj+1/2 ] (173a)

Cj+I/2 = E + 2F¢*i,j+l/2 (173b)

With second-order-accurate central-difference and one-sided-difference approximations used for the

space and time derivatives, respectively, the difference equation for equation (172) becomes

1D

_ j+l/2([2Atl-FAt2(¢j_-C_r_ /ktl (___-1

}2 At1 + At2 - n n n-1

- * (174)-- _Yi,j+l/2 i+l,j+l i-l,j+1 -t- i+l,j (Pi-l,j
2 (_i+1 - _i-1) /lj+l -- _j

By linearizing consistently with the q-sweep of the AF procedure, the difference equation may be
rewritten for solution in tridiagonal form (eq. (169)) as

ej AXj_ 1 -b dj A_j -t- ej A_j+l -----Rj

where

c_=0 (175a)
2 At 1 . At2 1

- (175b)
dj = 4 Atl (Atl + At2)Dj+I/2 rlj+l - rlj

2 At1 + At2 1 " (175c)
ej = 4 At1 (At1 + At2) "Dj+I/2 + r/j+1 - rlj

and

Dj+I/2 [ 2 At_I-t-At2 (¢;--(_-_-¢_-FI--¢j%I)Rj = 4 (At1 -t- At2) Atl

)]At2 - n _ - ¢* (175d)

After the (-sweep of the AF solution procedure is completed, the potentials on the far-spanwise
boundary (j = 1) must be recomputed (since the potentials on the adjacent plane of grid points
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have changed values because of the _-sweep) according to

-1 (Rj + ej ACj+I ) (176)

Upper Boundary

The upper boundary condition is implemented during the _-sweep of the AF solution procedure
to determine values of the potential ¢n+1 on the extreme upper plane of grid points (k = NZT). The
condition (eq. (13c)) is applied midway between the extreme and adjacent grid planes according to

1D i'z,n+l'_ /',_n+l_ = 0 (177)
"_ k-l/2 _,'_'t ]k-l/2 -t- _,w_ ]k-l/2

where

B2 ) 1/2Dk-1/2 = + C_-1/2 (178a)

(¢ * ) (178b)• + Czi,k-1Ck_l/2 = E + F Xi,k

¢, -¢,
i+l,k i-l,k (178c)

¢*xi,k -'= _xi,j _i+1 -- _i-1

With second-order-accurate central-difference and one-sided-difference approximations used for the

space and time derivatives, respectively, the difference equation for equation (177) becomes

1D { [2 Atl -t-At2 (€_+1 -- ¢_) Atl (¢_ _ ¢___-1 _]k-l/2 L Atl + At2 \ _1 Atl + At2 At2 ] J

i€k_1 - Atl i_,k_l--yk_l
+ [-_---_I_-'A--_2\ "A-'tt1 Atl nt- ,'kt2 _ At2

+ = o (179)
Ck- ¢k-1

By linearizing consistently with the _-sweep of the AF procedure, the difference equation may be
rewritten for solution in tridiagonal form as

Ck ACk_l + d k ACk + e k ACk+l = -R k (180)

where

2 At1 + At2 1 (181a)
Ck = 4 Atl (Atl + At2)Dk-1/2 _k -- Ck-1

2 At1 + At2 D 1 (181b)
dk=4 k-/2+ Ck-Ck-
ek = 0 (181c)
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and

Dk-1/_ [2 _tl +zXt2(¢__ ¢_+ ¢_-1- ¢_-1)Rk = 4 (At1 + At2) At1

At1( n_0_-1 n _)] * (181d)At2 Ok -I- ¢k-1 - cr_- ____)Zk_l/2

Lower Boundary

The lower boundary condition is implemented during the (-sweep of the AF solution procedure
to determine values of the potential ¢n+1 on the extreme lower plane of grid points (k = 1). The

condition (eq. (13d)) is applied midway between the extreme and adjacent grid planes according to

1Dk+l/2 (€_+1)k+1/2- (¢_+1)k+1/2 =0 (182)

where

B2 ) 1/2
= (183a)

Dk+l/2 . C_+1/2

Ck+l/2 = E "Jr-F (qS*,, k --__;i,k+l) (183b)

¢i*+1,k- €;-1,k (18ac)

With second-order-accurate central-difference and one-sided-difference approximations used for the

space and time derivatives, respectively, the difference equation for equation (182) becomes

{[ [An+l fen _n-1)]Dk+l/2 2 At1 + At2 [Wk+l -- At1 [ k+l -- _'k+l

n+1 __ €_+1k+l - o (184)
¢k+1- Ck

By linearizing consistently with the _-sweep of the AF procedure, the difference equation may be
rewritten for solution in tridiagonal form (eq. (180)) as

Ck ACk-1 + dk ACk + ek ACk+l = -R k

where

ck = 0 (185a)

2 At1 + At2 1

dk = 4 At1 (At1 + At2) Dk+l/2 + _k+l -- _k (185b)

2 At1 + At2 1

ek = 4 At1 (At1 + At2) Dk+l/2 ¢k+1 - (k (185c)
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and

Dk+l/2 [2 At1+ At2 ¢, n • nak = 4 (Atl + At2) At1 ( k+l -- ¢k+1 + Ck -- Ck)

At1

(¢2+1-0_+_ + cn _ ¢_-1)] * (185d)At2 k -- Czk+l/2

Concluding Remarks

A time-accurate approximate-factorization (AF) algorithm has been described for solution of
the three-dimensional unsteady transonic small-disturbance equation. The AF algorithm consists
of a time-linearization procedure coupled with a subiteration technique. The algorithm is the basis
for the CAP-TSD (Computational Aeroelasticity Program-Transonic Small Disturbance) computer
code, which was developed for unsteady aerodynamic and aeroelastic analyses of realistic aircraft
configurations. The paper described details on the governing flow equations and boundary conditions,
with an emphasis on documenting the finite-difference formulas of the AF algorithm.

NASA Langley Research Center
Hampton, VA 23665-5225
November 7, 1991
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